

Danish Sensor Engineering

 Columbusvej 3 · DK-2860 Søborg · Denmark

ODS Sensor API

Programmers Manual

DSE.dll Version 4

(Universal ODS Select-X Single / Master Sensor Support)

2
ODS Sensor API - Programmers Manual

DSE.dll - Universal ODS Single / Master Sensor Support

© by DSE - Danish Sensor Engineering ApS

Columbusvej 3
DK-2860 Søborg
Denmark

Tel: (+45) 39 66 71 44
Fax: (+45) 39 66 71 45
e-mail: dse@sensor.dk

6TH edition, November, 2014

Printed at DSE ApS

3
ODS Sensor API - Programmers Manual

DSE.dll - Universal ODS Single / Master Sensor Support

TABLE OF CONTENTS

Description 4
DLL OPERATION 5
 DLL Functionality 5
 SELECT Functionality 7
 Compatability 10
 Language Compatability 10
REFERENCE 11
 Standard Functions 11
 DSE_Open(…) 11
 DSE_OpenTcp(…) 11
 DSE_Close() 12
 DSE_StartQueue() 13
 DSE_StopQueue() 13
 DSE_PopQueue() 13
 DSE_PeekQueue() 13
 DSE_PeekValue() 14
 DSE_QueueSize() 14
 DSE_ClearQueue() 14
 DSE_Status(…) 14
 SELECT-X Functions 15
 DSESEL_Check() 15
 DSESEL_GetBit(…) 16
 DSESEL_GetPar(…) 16
 DSESEL_SetBit(…) 17
 DSESEL_SetBit(…) 17
 DSESEL_Select(…) 18
 DSESEL_GetSerial(…) 18
 Using the Status Flags 19
 Other Predefined Constants 21

4
ODS Sensor API - Programmers Manual

DSE.dll - Universal ODS Single / Master Sensor Support

DESCRIPTION

The ODS Sensor API is designed to make it easy for the application
programmer to obtain measurement data from ODS sensors within a
Windows™ application. This software, intended for handling a single
sensor, supports all the ODS sensor models in the 2002 product
program. Multi sensor DLL’s are offered on a special order basis.

About this maual

The code snippets and examples in this manual are written in the
C/C++ syntax unless otherwise stated.

Design Philosophy

The DLL has been designed to be robust in use, and it is thus
allowed to call any function at any time without any risk of runtime
errors. If a function is unable to perform its intended task, it will
merely return DSE_INVALID (a numerical constant with the value -1)
or DSE_FAILURE (with the value 0).

Similarily, after calling DSE_Open, the DLL will maintain
synchronization with the sensor at all times, in order to avoid data
loss and to allow quick starting and stopping of the data queue as
well as making status readouts possible at all times.

To keep the DLL simple yet robust, the use of callback functions and
windows messages has been avoided. Instead, a simple polling
strategy has been adopted. It is left to the application programmer to
choose and implement the actual polling-loop. Functions for obtaining
status flags and queue size etc. have been provided as described
below, and have been optimized for frequent calling.

5
ODS Sensor API - Programmers Manual

DSE.dll - Universal ODS Single / Master Sensor Support

DLL OPERATION

DLL Functionality

The ODS Sensor API can be used with any development
environment (eg. programming language) capable of calling functions
residing in a DLL (Dynamic Link Library). While DSE provides the
“#include” files for a limited number of popular languages, it will be
necessary for the developer to make these manually for other
languages. Se also Apendix A. The files provided ought to ease this
process, serving as a template.

We recommend using static linking with DSE.dll, but loading the DLL
at runtime (dynamic linkage) should be quite possible (but has not
been tested, nor is it currently supported by DSE).

Status Flags

The DLL maintains several status flags to facilitate detection of
various error conditions, these flags can be read as a bit-coded
integer by calling DSE_Status(). Please refer to the reference section
for further details.

Initialization

After calling DSE_Open() with appropriate parameters, the DLL will
open the chosen serial port, allocate a measurement queue, and try
to synchronize with the connected sensor.

After initializing the DLL, the most recently converted measurement
value can be obtained by calling DSE_PeekValue(). Note that since
this function does not make use of the internal queue, there is no way
to ensure that a given measurement hasn't already been read, nor is
it possible to know if one or more measurements has been lost
between subsequent calls to this function.

6
ODS Sensor API - Programmers Manual

DSE.dll - Universal ODS Single / Master Sensor Support

Queue Functions

The internal queue will hold at least 2 seconds of data to prevent loss
of measurements while the application is processing data or is
otherwise busy.

Calling DSE_StartQueue() will make the DLL store the received
measurements in the internal queue, from which the measurements
can be read in a first-in-first-out (FIFO) manner. This is done by
calling DSE_PeekQueue() or DSE_PopQueue(). The former doesn't
change the queue while the latter will remove the measurement from
the queue. Thus, if measurements are used in more than one place,
one would use DSE_PeekQueue() for all readouts except the last,
where DSE_PopQueue() would be used in order to remove the value,
ensuring subsequent calls to DSE_PeekQueue() will return the next
measurement in the queue.

To check whether any measurements are waiting in the queue, the
current queue size can be obtained by calling DSE_QueueSize(),
which will return the number of measurements in the queue as an
integer. If the number returned is greater than zero, measurements
are waiting in the queue.

The data gathering can be stopped at any time by calling
DSE_StopQueue(). Measurements already present in the queue will
remain available for readout by DSE_PeekQueue and/or
DSE_PopQueue, but no further data will be stored in the queue. The
queue can be emptied of all measurements at any time, using the
DSE_ClearQueue() function.

Deinitialization

When the application is finished using the DSE.dll, it can be closed by
calling DSE_Close(), causing the serial port to be released as well as
deallocating the queue.

7
ODS Sensor API - Programmers Manual

DSE.dll - Universal ODS Single / Master Sensor Support

SELECT Functionality

In order to allow re-programming of SELECT-X enabled sensors, a
number of SELECT-X support functions have been implemented.
Please refer to the sensor documentation and datasheets for further
information about SELECT-X functionality and availability. Note that
the functions used for SELECT-X programming differs slightly from
those used for SELECT-2 programming (as used with older ODS
sensor models).

To use these functions sucessfully, a SELECT-X capable sensor
should be attached and powered up, and the apropriate Com port
should be opened using a call to DSE_Open().

To obtain the current SELECT-X settings for the current sensor, first
call DSESEL_Check() to download the settings from the sensor. If the
download went well, the function will return DSE_SUCCESS (1), if
not DSE_FAILURE (0) will be returned.

When the above function succeeds, call DSESEL_Get Bit(BitMask)
and/or DSESEL_GetPar(ParNum) to obtain the downloaded
SELECT-X settings. using an apropriate bit-mask or word parameter
as argument (please refer to the reference section for valid masks
and parameters and their symbolic constant names).

8
ODS Sensor API - Programmers Manual

DSE.dll - Universal ODS Single / Master Sensor Support

To program (change) the SELECT-X settings stored in the currently
opened sensor, first call DSESEL_SetBit(BitMask, BitVal) and/or
DSESEL_SetPar(ParNum, ParVal) as necessary, where
BitMask/ParNum is the mask/number (or its symbolic constant) for
the bit or parameter that is to be changed, and BitVal/ParVal is the
new value for the bit or paramter (true/false for bits, integer number
for parameters). Repeat the above procedure as necessary for each
bit and/or parameter that needs changing. Finally perform the actual
SELECT-X programming by calling DSESEL_Select().

After successful programming, the DSESEL_Select() function will
return DSE_SUCCESS (1) otherwise DSE_FAILURE (0) is returned.
If successful, DSESEL_GetBit(BitMask) and
DSESEL_GetPar(ParNum) can be used to verify the written values.
No additional call to DSESEL_Check() is needed after programming
with DSESEL_Select(), as this function is called internally by
DSESEL_Select() to verify correct programming.

Detect Functionality

To facilitate easy and flexible operation of programs using the DLL,
additional functions have been implemented to enable auto-detection
of the sensor and its settings (COM port, baud rate & data telegram
size).

NOTE: The auto-detect functions (prefixed with "DSEDET_") assume
that the DSE.dll is NOT initialized (eg. Not open), and will return
DSE_INVALID (-1) if this is the case. Furthermore, please note that
during auto-detection, the queue and the flags may change. After
detection the DLL is left closed, thus allowing a call to DSE_Open()
with the newly detected settings.

Auto-detection starts with the determination of available COM ports.
This is done by calling DSEDET_DetectPorts(), which will return the
number of ports found.

The ports can then (if necessary) be obtained by calling
DSEDET_GetPort(), which when given a number between zero and
the number returned by DSEDET_DetectPorts() MINUS ONE, will
return the actual COM port number for that port.

9
ODS Sensor API - Programmers Manual

DSE.dll - Universal ODS Single / Master Sensor Support

After calling DSEDET_DetectPorts(), call DSEDET_DetectSensors()
to enumerate the sensor(s) on the (detected) ports. The function will
return the number of sensors found.

To obtain the settings (COM port, baud rate and number of telegram
bits) for a detected sensor, call DSEDET_GetSensorPort(),
DSEDET_GetSensorRate() and DSEDET_GetSensorBits(), giving
the sensor number as argument to each function. This argument
must lie between zero and the number returned by
DSEDET_DetectSensors() MINUS ONE.

The values returned by DSEDET_GetPort() (but NOT
DSE_GetSensorPort()), DSEDET_GetSensorRate() and
DSEDET_GetSensorBits() are designed to be used as arguments for
DSE_Open().

NOTE: The value returned by DSEDET_GetSensorPort() is an index,
which should be used as argument to DSEDET_GetPort() to obtain
the actual COM port number! Accordingly the following syntax can be
used to obtain the COM port for a detected sensor in one operation:

Port=DSEDET_GetPort(DSEDET_GetSensorPort(SensNo));

While the two other arguments can be obtained directly, like this

Rate=DSEDET_GetSensorRate(SensNo);
Bits=DSEDET_GetSensorBits(SensNo);

To open a detected sensor directly, use this syntax:

DSE_Open
(
 DSE_GetPort(DSE_GetSensorPort(SensNo)),
 DSE_GetSensorRate(SensNo),
 DSE_GetSensorBits(SensNo)
);

Note: "SensNo" is assumed to be an integer variable holding the
index of the detected sensor to be opened (typically 0, indicating the
first/only sensor detected).

10
ODS Sensor API - Programmers Manual

DSE.dll - Universal ODS Single / Master Sensor Support

Compatibility

The DSE.dll has been tested with Borland C++ Builder 5.0 and Delphi
4.0, but should work with any Win32 programming platform with
support for calling functions in a DLL. The DSE.dll file must reside in
the Windows directory, the system directory, a directory on the path,
or in the application directory itself at runtime, in order for an
application using the DSE.dll to work. It is recommended to place the
DSE.dll in the application directory.

Language Compatibility

Specific to C++ Builder it is necessary to have the “DSE.lib” file
available on the path or in the project directory during development
(this may also be the case for other C/C++ compilers). Also, the
DSE.h file must be included (using the #include statement) in the
source file(s) that will be calling the functions in the DLL.

Similarly, the “DSE.inc” file must be included (with the {&include}
statement) in the relevant source files when working with Delphi or
other Pascal compilers (alternatively, the contents of this file can be
pasted into the source files using the DLL functions).

Upon request, DSE may be able to supply a "DSE.bas" file, which
can be used with VisualBasic, in much the samme maner as
"DSE.inc" is used with Pascal. This file however, is largely untested.

11
ODS Sensor API - Programmers Manual

DSE.dll - Universal ODS Single / Master Sensor Support

REFERENCE

Standard Functions

These functions, prefixed with “DSE_”, are used for normal operation
of the DLL, including opening and closing ports, managing the queue
and performing measurement and status readouts.

 int DSE_Open(int Port, int Rate, int Bits)

Initializes and opens the serial port indicated by the Port argument, at
the baud rate indicated by Rate argument and using the telegram
size indicated by the Bits argument. The Port argument must be a
number indicating a valid serial port number (while some checking is
done to ensure an available port is chosen, there is no guarantee that
a sensor is present on the port). It is necessary to call this function
before any measurements can be obtained from the DLL; this is
typically done at program start. The function returns DSE_SUCCESS
(1) if the port was opened, DSE_INVALID if invalid arguments was
given and DSE_FAILURE (0) if the port could not be opened
successfully.

Valid argument values:
 Port – Any valid COM port number not already in use.
 Rate – DSE_RATE_38400 or DSE_RATE_115200
 Bits – DSE_BITS_16 or DSE_BITS_18

Flags affected:
 DSE_CLOSED – Flag is cleared.
 (Other flags may be reset to default values).

 int DSE_OpenTcp(char* Host, int Port)

Initializes and opens a TCP/IP connection to the network-host
indicated by the Host argument, using the TCP/IP port indicated by
the Port argument. An Ethernet-capable Sensor or supported Serial-
to-Ethernet converter must be present on the network at the given
host and port number. The function allocates the various internal data
structures and then initiates data synchronization. The Host
Argument must be a C-string (null-terminated byte-array of ASCII
characters) containing either a valid IP address (“aaa.bbb.ccc.ddd”)
or a valid hostname (“host[.sub-domains].domain”). The Port

12
ODS Sensor API - Programmers Manual

DSE.dll - Universal ODS Single / Master Sensor Support

argument must be a number indicating a valid TCP/IP port. It is
necessary to call this function before any measurements can be
obtained from the DLL (via Ethernet, please refer to the DSE_Open
function for serial connections). Returns are DSE_SUCCESS (1) if
the port was opened, DSE_FAILURE (0) otherwise.

Valid argument values:

 Host - Any valid string containing an IP address or a hostname.
 Port – Any valid TCP/IP port number (1-65535).

Flags affected:
 DSE_CLOSED – Flag is cleared.

 int DSE_Close(void)

Closes the serial port and deallocates dynamic structures. After
calling DSE_Close() synchronization with the sensor is lost and no
further data will be processed. Furthermore, any data present in the
queue will be lost at this point. Returns DSE_SUCCESS (1) if the port
was closed, DSE_FAILURE (0) if the port was already closed or an
error occured.

Flags affected:
 DSE_CLOSED – Flag is set.
 DSE_STARTED – Flag is cleared.
 (Other flags may be reset to default values).

 int DSE_StartQueue(void)

Instructs the DLL to gather subsequent measurements in its queue,
this continues until the queue overflows or DSE_StopQueue() or
DSE_Close() is called. In case of overflow, measurement gathering is
suspended, NOT stopped, and will resume automatically if or when
the overflow condition is resolved (typically when popping one or
more measurements from the queue), there is no need to call
DSE_StartQueue() again in this case. Returns DSE_SUCCESS (1)
unless the DLL is closed, in which case DSE_FAILURE (0) is
returned.

Flags affected:
 DSE_STARTED – Flag is set.

13
ODS Sensor API - Programmers Manual

DSE.dll - Universal ODS Single / Master Sensor Support

 int DSE_StopQueue(void)

Stops measurement gathering. The DLL will continue to maintain
synchronization with the sensor, and while measurements may be
lost, it is still possible to obtain the latest valid measurement received
by calling DSE_PeekValue(). Also the queue will remain valid, so any
measurements stored in it up to this point will be available for readout
(using DSE_PeekQueue() and/or DSE_PopQueue()). Measurement
gathering can be resumed at any time by calling DSE_StartQueue().
Returns DSE_SUCCESS (1) unless the DLL is closed, in whitch case
DSE_FAILURE (0) is returned.

Flags affected:
 DSE_STARTED – Flag is cleared.

 int DSE_PopQueue(void)

Returns (and removes) the front (oldest) measurement in the queue.
To avoid removing the measurement from the queue, use
DSE_PeekQueue() instead. Returns DSE_INVALID (-1) if the queue
is empty or if the DLL is closed.

Flags affected:
 DSE_OVERFLOW – Flag is cleared.

 int DSE_PeekQueue(void)

Returns (without removing) the front (oldest) measurement in the
queue. Returns DSE_INVALID (-1) if the queue is empty or if the DLL
is closed.

Flags affected:
 None.

14
ODS Sensor API - Programmers Manual

DSE.dll - Universal ODS Single / Master Sensor Support

 int DSE_PeekValue(void)

Returns the last valid measurement processed by the DLL, bypassing
the queue (the value will still be queued, if the queue is running).
Returns DSE_INVALID (-1) if no valid measurement has been
obtained or if the DLL is closed.

Flags affected:
 None.

 int DSE_QueueSize(void)

Returns the number of measurements currently in the queue. Returns
DSE_INVALID (-1) if the DLL is closed.

Flags affected:
 None.

 int DSE_ClearQueue(void)

Removes all values from the queue. Returns DSE_FAILURE (0) if the
DLL is closed, otherwise DSE_SUCCESS (1) is returned.

Flags affected:
 DSE_OVERFLOW – Flag is cleared.

 int DSE_Status(bool Clear=false)

Returns the status flags, combined (bit-coded) into a single integer
value. This function can be called even when the DLL is closed. Note
that the Clear argument is optional and will (if not supplied) default to
false. If DSE_Status() is called with true as the argument, the
persistent flag DSE_SYNCERROR will be cleared afterwards (See
the “Status Flags” section for further information).

Valid argument values:
 Clear – True or False (defaults to False if ommited).

Flags affected:
 DSE_SYNCERROR – Flag is cleared if true is given as argument.

15
ODS Sensor API - Programmers Manual

DSE.dll - Universal ODS Single / Master Sensor Support

SELECT Functions

These functions, prefixed with “DSESEL_”, are used when checking
or performing SELECT-X programming. They will only work with
SELECT-X enabled sensors. Furthermore, for SELECT-X functions to
work, it is required that the DLL has been initialized (by a previous
call to DSE_Open).

NOTE: Some of these functions may affect and/or clear the queue as
well as affect various flags. The flags should be ignored during
programming, and unread data should not be left in the queue.

 int DSESEL_Check(void)

Reads the current SELECT-X settings of the sensor, allowing
subsequent calls to DSESEL_GetBit(BitMask), DSESEL_GetPar
(ParNum). The function returns DSE_SUCCESS (1) if the settings
were successfully obtained from the sensor and DSE_FAILURE (0)
otherwise (typically if the sensor is not in programming mode).

Flags affected:
 Various (should be ignored).

16
ODS Sensor API - Programmers Manual

DSE.dll - Universal ODS Single / Master Sensor Support

 int DSESEL_GetBit(int BitMask)

Returns the current setting of the indicated SELECT-X bit-flag
parameter. Only after a call to DSESEL_Check() or DSESEL_Select()
will this function return a meaningful value, otherwise DSE_INVALID
(-1) will be returned.

Valid argument values:
 BitMask – DSE_BIT_EXTMODE (0), DSE_BIT_LVLMODE (1) ,
DSE_BIT_ERRMODE (2) , DSE_BIT_SAMMODE (3) ,
DSE_BIT_DIFMODE (4).

Possible return values:
 true (1), false (0) or DSE_INVALID (-1) – Corresponding to the
setting of the SELECT-X bit-flag indicated by the BitMask argument,
or DSE_INVALID in case no SELECT-X settings have been
previously read from the sensor or if the argument is out of range.

Flags affected:
 None.

 int DSESEL_GetPar (int ParNum)

Returns the current setting of the indicated SELECT-X word
parameter. Only after a call to DSESEL_Check() or DSESEL_Select()
will this function return a meaningful value, otherwise DSE_INVALID
(-1) will be returned.

Valid argument values:
 ParNum – DSE_PAR_GRPSIZE (1), DSE_PAR_GRPZERO (2),
DSE_PAR_COMRATE (3), DSE_PAR_MEDSIZE (4).

Possible return values:
 0-? (depending on the parameter being read) or DSE_INVALID (-1)
– Corresponding to the setting of the SELECT-X word parameter
indicated by the ParNum argument, or DSE_INVALID in case no
SELECT-X settings have been previously read from the sensor or if
the argument is out of range.

Flags affected:
 None.

17
ODS Sensor API - Programmers Manual

DSE.dll - Universal ODS Single / Master Sensor Support

 int DSESEL_SetBit(int BitMask, int Value)

Stores a new value forthe indicated SELECT-X bit-flag parameter.
Only after a call to DSESEL_Select() will the stored value be written
to the sensor.

Valid argument values:
 BitMask – DSE_BIT_EXTMODE (0), DSE_BIT_LVLMODE (1) ,
DSE_BIT_ERRMODE (2) , DSE_BIT_SAMMODE (3) ,
DSE_BIT_DIFMODE (4) , DSE_BIT_RECMODE (5).
 Value – true (1) or false (0).

Possible return values:
 DSE_SUCCESS, DSE_FAILURE or DSE_INVALID (-1) – If the
value was correctly stored, DSE_SUCCESS is returned, otherwise
DSE_FAILURE. DSE_INVALID is returned if the parameter or value
arguments are out of range.

Flags affected:
 None.

 int DSESEL_SetPar (int ParNum, int Value)

Stores a new value for the indicated SELECT-X word parameter.
Only after a call to DSESEL_Select() will the stored value be written
to the sensor.

Valid argument values:
 ParNum – DSE_PAR_RUNSIZE (1), DSE_PAR_RUNZERO (2),
DSE_PAR_COMRATE (3), DSE_PAR_MEDSIZE (4),
DSE_PAR_AVGSIZE (5).
 Value – 0- ? (depending on the parameter being set).

Possible return values:
 DSE_SUCCESS, DSE_FAILURE or DSE_INVALID (-1) – If the
value was correctly stored, DSE_SUCCESS is returned, otherwise
DSE_FAILURE. DSE_INVALID is returned if the parameter or value
arguments are out of range.

Flags affected:
 None.

18
ODS Sensor API - Programmers Manual

DSE.dll - Universal ODS Single / Master Sensor Support

 int DSESEL_Select(void)

Uploads the SELECT-X settings, previously supplied via the
DSESEL_SetBit and DSESEL_SetPar to the sensor. The function
returns DSE_SUCCESS (1) if the sensor were successfully
programmed and verified with the new settings, and DSE_FAILURE
(0) if the programming was unsuccessful or if the verification failed.

NOTE: This function will call DSESEL_Check() internally, in order to
verify correct programming. Thus it is not necessary to call
DSESEL_Check() manually before using DSESEL_GetBit() and
DSESEL_GetPar() to obtain the values just stored in the sensor.

Valid argument values:
 Mode – DSESEL_MODE_AVG (0), DSESEL_MODE_LVL (1),
 DSESEL_MODE_EXT (2) or DSESEL_MODE_STD (3).
 Par1 – 2-200.
 Par2 – 0-99.

Flags affected:
 Various (should be ignored).

 int DSESEL_GetSerial(void)

Downloads the Serial Number of the attached ODS sensor.

19
ODS Sensor API - Programmers Manual

DSE.dll - Universal ODS Single / Master Sensor Support

Using the Status Flags

The DSE_Status() function returns an integer containing the various
status flags, in bit-coded form. In order to check the Boolean status of
a given flag, it is necessary to use the following formula (shown in
pseudo-code):

(STATUS_INTEGER AND FLAG_BIT_CODE) = FLAG_BIT_CODE

Where:

“STATUS_INTEGER” is either an integer variable containing the
value obtained with previous a call to DSE_Status() or a direct call to
DSE_Status() itself

“FLAG_BIT_CODE” is the bit-code of the Flag to be tested (see
below for predefined constants that can be used here).

“AND” should be the binary AND (NOT the logical) operator of the
language in question.

“=” should be the numerical equality operator of the language in
question (for C / C++ this would be “==”).

NOTE: In languages such as C or C++, where an integer will
evaluate to Boolean “False” when zero and “True” when non-
zero, the following, more compact formula will work as a valid,
logical expression:

STATUS_INTEGER AND FLAG_BIT_CODE

20
ODS Sensor API - Programmers Manual

DSE.dll - Universal ODS Single / Master Sensor Support

The seven valid status bit-codes are defined in the header files
accompanying the DLL (DSE.h, DSE.pas, and DSE.bas). This has
been done to improve readability and to ensure compatability with
future DLL versions. When using the DLL from languages not
compatible with any of the supplied header files it is suggested that
these values be defined as constants according the following scheme
(please refer to the file “DSE.h” for verification of these values):

 Name Value

 DSE_CLOSED 1
 DSE_STARTED 2
 DSE_OVERFLOW 4
 DSE_NOSYNC 8
 DSE_SYNCERROR 16
 DSE_COMMERROR 128
 DSE_COMMSTALL 256

NOTE: Although it is strongly recommended to do so, it is not
madatory to use these symbolic constants. It is equally possible to
use their numerical equivalence instead. However, DSE reserves the
right to change these numerical values in future versions of the DLL.

NOTE: The DSE_SYNCERROR flag is special, in that it is never
cleared automatically. This ensures that the flag will remain set if a
transient sync. error was detected. This is as opposed to the
DSE_NOSYNC flag, which will remain set only as long as the sync.
error state persists. To clear this “persistent” flag, supply true as
argument to the DSE_Status() function. Clearing the flag will take
effect AFTER the current call to DSE_Status() function, thus allowing
the flag to be read and afterwards cleared in a single call to the
function.

The polarity of these flags has been chosen in such a way that, when
operating nominally (eg. No error conditions and with the queue
stopped), DSE_Status() will return DSE_OK (0). This has been done
to facilitate easy error checking in languages where an integer will
evaluate to Boolean “False” when zero and “True” when non-zero, as
the following code example illustrates:

21
ODS Sensor API - Programmers Manual

DSE.dll - Universal ODS Single / Master Sensor Support

if(!DSE_Status())
 // …do normal operations here.
else
 // …do error processing here.

NOTE: Notice that a logical negation operator “!” has been placed in
front of the call to DSE_Status() within the “if” statement. This was
merely done for aesthetic reasons, to allow the “normal operation” to
follow the “if” statement and relegate the “error processing” to below
the “else” statement. The code would work just as well without the “!”,
providing that the “normal operation” code is swapped with the “error
processing” code.

Other Predefined Constants

In addition to the seven status bit-codes, discussed in the previous
section, a number of other symbolic constants are defined in the
header/include files accompanying the DLL (DSE.h and DSE.pas).

NOTE: Although it is strongly recommended to do so, it is not
madatory to use these symbolic constants. It is equally possible to
use their numerical equivalence instead (shown in the parenthesis).
However, DSE reserves the right to change these numerical values in
future versions of the DLL.

DSE_RATE_38400 (38400),
DSE_RATE_115200 (115200),
DSE_RATE_ 230400 (230400),
DSE_RATE_ 460800 (460800),
DSE_RATE_ 921600 (921600)
– The allowable baud rates for the DSE_Open() function. (Please
refer to the Sensor Manual for further information regarding the baud
and data rates).

22
ODS Sensor API - Programmers Manual

DSE.dll - Universal ODS Single / Master Sensor Support

DSE_BITS_16 (16),
DSE_BITS_18 (18)
– The number of bits in the small respectively large data telegram
size used by different sensor models. (Please refer to the Sensor
Manual for further information regarding the data telegram size.)

DSE_INVALID (-1)
– The value returned whenever a function is unable return meaningful
data (ie. when the DLL has not been opened).

DSE_SUCCESS (1),
DSE_FAILURE (0)
– The return values used by certain functions to indicate success or
failure.

DSE_OK (0)
– The value returned by DSE_Status() when status is nominal,
corresponding with all flags being clear (ie. The DLL is open and
presently synchronized with a sensor, the queue is running and not
overflowed and no sync. errors have been detected since last
clearance of DSE_SYNCERROR).

DSE_BIT_EXTMODE (0),
DSE_BIT_LVLMODE (1),
DSE_BIT_ERRMODE (2),
DSE_BIT_SAMMODE (3),
DSE_BIT_DIFMODE (4)
– The bit-flags used during SELECT-X programming to indicate the
various on/off settings. (Please refer to the Sensor Manual for further
information about SELECT-X settings).

DSE_PAR_RUNSIZE (1),
DSE_PAR_RUNZERO (2),
DSE_PAR_COMRATE (3),
DSE_PAR_MEDSIZE (4),
DSE_PAR_AVGSIZE (5)
– The parameter numbers used during SELECT-X programming to
indicate the various numerical settings. (Please refer to the Sensor
Manual for further information about SELECT-X settings).

